Snail1-expressing cancer-associated fibroblasts induce lung cancer cell epithelial-mesenchymal transition through miR-33b

نویسندگان

  • Jia You
  • Min Li
  • Yun Tan
  • Liming Cao
  • Qihua Gu
  • Huaping Yang
  • Chengping Hu
چکیده

Lung cancer has a high propensity for metastasis. Cancer-associated fibroblasts (CAFs) are the main type of stromal cells in cancer tissue, are activated by tumor cells, and play a significant role in tumor development. However, whether CAFs induce lung cancer cell metastasis, as well as pathway involved in CAF-induced lung cancer cell metastasis, is uncertain. Snail1 is a transcriptional factor whose expression in the stroma is associated with lower survival rates in patients with cancer. However, how Snail1 regulates the crosstalk between stromal cells and tumor cells when it is expressed in the stroma has not been determined. Altered microRNA (miRNA) expression is correlated with lung cancer metastasis. Our previous study of microRNAs showed that miR-33b levels were clearly reduced in lung cancer cell lines and lung cancer tissues, and miR-33b suppressed tumor cell epithelial-mesenchymal transition (EMT) when its expression was elevated. In this study, we found that co-culturing CAFs with lung cancer cells induced miR-33b downregulation and promoted epithelial cells EMT. Moreover, we found that miR-33b overexpression in lung cancer cells counteracted CAF-induced EMT. Interestingly, Snail1 expression in fibroblasts activate the inductive effects of CAFs on lung cancer cell EMT. Hence, understanding the molecular mechanism underlying the communication between stromal cells and tumor cells mediated by miR-33b may lead to the identification of novel targets for the treatment of lung cancer. Additionally, understanding the role of Snail1 driving CAFs to induce lung cancer cell EMT may provide with a new perspective on the treatment of lung cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Snail1-expressing fibroblasts as a source of paracrine signals in colon cancer tumors

The transcription factor Snail1 is involved in the acquisition of invasive properties during the epithelial-mesenchymal transition. Snail1 expression in tumor stroma is associated with lower specific survival in colon cancer patients. Nevertheless, the role of Snail1 expression in stroma has not been determined. Using human primary normal and cancer associated fibroblasts (CAFs), fibroblastic c...

متن کامل

miR-34a inhibits pancreatic cancer progression through Snail1-mediated epithelial–mesenchymal transition and the Notch signaling pathway

Epithelial-mesenchymal transition (EMT) and Notch signaling are important for the growth and invasion of pancreatic cancer, which is a leading cause of cancer-related deaths worldwide. miR-34a has been shown to play pivotal roles in the progression of several types of cancer. However, little is known about the regulatory mechanisms of miR-34a in pancreatic cancer processes. The aim of this stud...

متن کامل

A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial–mesenchymal transition

Snail1 is a zinc finger transcriptional repressor whose pathological expression has been linked to cancer cell epithelial-mesenchymal transition (EMT) programs and the induction of tissue-invasive activity, but pro-oncogenic events capable of regulating Snail1 activity remain largely uncharacterized. Herein, we demonstrate that p53 loss-of-function or mutation promotes cancer cell EMT by de-rep...

متن کامل

Protumorigenic effects of Snail-expression fibroblasts on colon cancer cells.

Snail1 is a transcriptional factor that plays an important role in epithelial-mesenchymal transition and in the acquisition of invasive properties by epithelial cells. In colon tumors, Snail1 expression in the stroma correlates with lower specific survival of cancer patients. However, the role(s) of Snail1 expression in stroma and its association with patients' survival have not been determined...

متن کامل

Wnt signaling through Snail1 and Zeb1 regulates bone metastasis in lung cancer.

Wnt-β-catenin signaling participates in the epithelial-mesenchymal transition (EMT) in a variety of cancers; however, its role in lung cancer induced bone metastasis and the underlying mechanisms remain unclear. Here, we demonstrate that β-catenin, Snail1 and Zeb1 were significantly upregulated in bone metastasis tissues from human and mouse compared with the normal controls. E-cadherin express...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017